RDDs are the new bytecode of Apache Spark

O. Girardot

With the Apache Spark 1.3 release the Dataframe API for Spark SQL got introduced, for those of you who missed the big announcements, I’d recommend to read the article : Introducing Dataframes in Spark for Large Scale Data Science from the Databricks blog. Dataframes are very popular among data scientists, personally I’ve mainly been using them with the great Python library Pandas but there are many examples in R (originally) and Julia.

Of course if you’re using only Spark’s core features, nothing seems to have changed with Spark 1.3 : Spark’s main abstraction remains the RDD (Resilient Distributed Dataset), its API is very stable now and everyone used it to handle any kind of data since now.

But the introduction of Dataframe is actually a big deal, because when RDDs were the only option to load data, it was obvious that you needed to parse your “maybe” un-structured data using RDDs, transform…

View original post 917 more words


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s